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1. Introduction

Dynamical SUSY breaking (DSB) may be an attractive explanation of the hierarchy be-

tween the electro-weak scale and the Planck scale [1]. In spite of the fact that there are

models which break SUSY spontaneously at the ground state (see for example the re-

view [2]), these models are extremely rare and they are subject to some severe constrains.

Moreover, a generic (and calculable) SUSY breaking model should have a spontaneously

broken R-symmetry [3], leading to a relatively light R-axion, which gets its mass only from

couplings to supergravity [4] or to some higher dimensional operators. Current astrophys-

ical observations disfavor this possibility.

These difficulties provide a good motivation to consider the possibility that SUSY is

broken dynamically in a meta-stable vacuum (see [5] for a review of DSB both in stable

and meta-stable vacua). The idea of DSB in a meta-stable vacuum got a lot of attention

after it was shown by Intriligator, Seiberg and Shih (ISS) in [6] that a simple and generic

class of models, supersymmetric QCD (SQCD) in the free magnetic range, possesses local

meta-stable SUSY breaking vacua (see e.g. [7 – 10]). The authors of [6] considered SQCD

with gauge group SU(Nc) and Nf flavors in the range Nc < Nf < 3Nc/2. It was shown

that if the quarks are given small and equal masses then the theory has a long-lived SUSY

breaking vacuum. Since in this range the magnetic description of the theory is weakly

coupled in the IR, the analysis at low energies was done using the Seiberg duality [11].

At tree-level massive SQCD has a moduli space of SUSY breaking vacua, but one-loop

quantum effects stabilize the pseudo-moduli at the origin of field space.
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In this work we study SQCD with massless and massive (but light) flavors. There

are several reasons to consider this model. First, such a theory is an extreme case of

massive SQCD with generically distributed masses. Even though the ISS model looks as

a good starting point for direct gauge mediation (for early models see [12 – 15]), it should

be modified in order to produce viable phenomenology. One of the reasons for such a

modification is an approximate R-symmetry at low energies which protects gauginos from

getting masses. Some of the modifications included hierarchical quark masses [8] since this

introduces another scale with which one can tune the lifetime independently of gaugino

masses. Therefore, it is interesting to understand a limiting case of a generic distribution,

taking some of the flavors to be completely massless.

Another motivation is that SQCD has a natural embedding in type IIA string theory,

as the low energy theory on intersecting Neveu-Schwarz (NS) fivebranes and D-branes [16]

(for a review, see [17]). The brane description of the meta-stable vacua of [6] was stud-

ied recently in [18 – 21]. Many modifications and variations of the basic model of [6] were

constructed, along with their brane descriptions (see e.g. [22 – 24]). It is tantalizing that in

these examples one could identify identical patterns of meta-stable SUSY breaking states

in the gauge theory and the classical brane system. In gauge theory, pseudo-moduli are sta-

bilized by one-loop quantum effects [6, 7, 25], while in the classical brane dynamics regime,

gravitational attraction in the NS fivebrane background stabilizes the branes in long-lived

SUSY breaking meta-stable configurations [21, 24]. It is interesting to see whether this

correspondence can be pushed further, and to check whether also our system has similar

qualitative properties in the perturbative brane dynamics regime.

We consider SU(Nc) SQCD with Nf0 massless flavors and Nf −Nf0 massive ones in

the range 0 < Nf0 < Nc < Nf < 3Nc/2 and study it in the dual magnetic description. In

such a case the maximal possible rank of the quarks mass matrix is still larger than the

rank of the dual gauge group, hence, there is no classical supersymmetric solution. Instead,

classically, these models possess a moduli space of SUSY breaking vacua. However, the

pseudo-moduli associated with the massless (electric) quarks are not lifted by one-loop

quantum effects in field theory [22] and a two-loop calculation is required to decide what

is the fate of this system.

In this paper we perform the calculation of the two-loop effective potential for these

pseudo-moduli. We show that at the two-loop level these directions are destabilized and,

consequently, there is no SUSY breaking meta-stable vacuum near the origin. This result

is also important for the case when all the flavors are massive, but there is mass hierarchy

among them. In that case the two-loop contribution of heavy quarks will dominate the one-

loop contribution of light quarks and the SUSY breaking solution of [6] may be destabilized.

In addition, we study the corresponding brane description and find compelling evi-

dence that a similar instability occurs there. In particular, in the appropriate sense, the

“origin” is destabilized by the brane dynamics. Note that so far in all the studied exam-

ples it was found that there is a non-trivial correspondence between the weakly coupled

brane dynamics and field theory: whenever there is a meta-stable state in gauge theory one

could identify a meta-stable state in the classical branes picture. Our work provides an-

other non-trivial check of this correspondence, beyond one-loop effects in field theory (and
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beyond classical gravity in the brane dynamics). We emphasize that understanding the

perturbative brane dynamics involves simple classical considerations, correctly predicting

the result of an intricate two-loop evaluation in field theory.

This paper is organized as follows. In section 2 we study a simple Wess-Zumino

(WZ) model which has a similar structure to the low energy SQCD, and then turn on

the appropriate gauge interactions. In section 3 we present (after a brief review) the

brane description of this gauge theory and analyze it. In section 4 we comment on some

implications of our results to a theory with a general distribution of masses, especially

the issue of stability of the local minimum of massive SQCD and its brane construction.

Finally, we summarize in section 5. Appendix A contains a brief review of [26] and some

technical details related to our calculation.

2. Field theory analysis

2.1 A simplified Wess-Zumino model

In this section we analyze a simple WZ model, which has a pseudo-moduli space of SUSY

breaking vacua at the one-loop approximation, and show that it does not have any SUSY

breaking minimum near the origin of field space. Consider a model with the chiral super-

fields listed in table 1, and a superpotential

W = hqiΦj
i q̃j − hµ2(Φ11 + Φ22), (2.1)

where i, j = 1, 2, 3. The components of the matrix Φ and vectors q, q̃ are given in terms of

the fields in table 1 by

Φ =







Φ11 Φ12 X

Φ21 Φ22 Y

X̃ Ỹ Z






, q =

(

χ ρ σ
)

, q̃ =







χ̃

ρ̃

σ̃






. (2.2)

Let the Kähler potential be canonical. The parameter h controls our loop expansion. Of

course, the physical parameter corresponding to h is IR free, allowing a faithful perturbative

treatment.

The model has manifest SU(2)×U(1)χρ×U(1)σ ×U(1)σ̃ ×U(1)R symmetry, where the

two upper components of q and q̃ transform as fundamentals of the SU(2) and Φ transforms

in the adjoint.1 Under the various U(1) symmetries the fields transform as summarized in

table 1. Note that once µ is turned off there is an SU(3)2 ×U(1)B ×U(1)R symmetry. The

baryon number is still present in our model as U(1)χρ + U(1)σ̃ − U(1)σ = U(1)B .

This system has no classical SUSY preserving vacuum. The F-terms of the relevant

meson components are

∂W
∂Φij

= h

(

χ̃

ρ̃

)

(

χ ρ
)

− hµ2
I2×2, i, j = 1, 2. (2.3)

1By that we mean that the upper-left 2 × 2 submatrix of Φ sits in the adjoint, (X, Y ) and (X̃, Ỹ ) are

fundamentals of SU(2) and Z is neutral.
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U(1)χρ U(1)σ U(1)σ̃ U(1)R

Φ11, Φ12, Φ21, Φ22 0 0 0 2

X,Y 1 0 -1 2

X̃ , Ỹ -1 -1 0 2

χ, ρ -1 0 0 0

χ̃, ρ̃ 1 0 0 0

σ 0 1 0 0

σ̃ 0 0 1 0

Z 0 -1 -1 2

Table 1: The chiral superfields and their global U(1) charges.

The first term is at most of rank one while the second term is of rank two. Thus, SUSY is

broken by a rank condition. Nonetheless, there is a stationary point with positive energy

(i.e. spontaneously broken SUSY),

Φ = 0, q =
(

µ 0 0
)

, q̃ =







µ

0

0






. (2.4)

The global symmetry is broken as SU(2) × U(1)χρ →֒ U(1)′. Thus, the above classical

solution has three Goldstone bosons. In addition, classically, there are some dangerous

pseudo-flat directions. Our purpose is to understand their quantum mechanical fate. For

convenience, we take µ and h to be real and define

ρ± =
1√
2
(ρ± ρ̃), χ± =

1√
2
(χ± χ̃). (2.5)

The squared mass of the fields σ, σ̃,X, X̃,Φ12,Φ21 is h2µ2. Similarly, the mass of χ+,Φ11,

ℑρ+,ℜρ− is 2h2µ2. The three real Goldstone bosons are ℑχ−,ℜρ+,ℑρ−. All the rest are

“accidental” pseudo-moduli which are not protected quantum mechanically, in general.

The results of the one-loop effective potential in this model are known from [22] and

we shall review them here. All pseudo-moduli fields but Z obtain similar positive mass

squared terms,

m2
ℜχ−

= m2
Φ22

= 2m2
Y,Ỹ

= h4µ2 ln 4 − 1

8π2
.

However, Z remains massless at one-loop. One can argue that in the one-loop effective

potential there will be no Zn terms, for any n > 1. The way to see it is to turn off the

expectation value of the classical pseudo-moduli Y and Ỹ . Doing so, particles whose mass

depends on the expectation value of Z are decoupled (in the mass matrix) from the ρ

sector which breaks SUSY. Thus, they sit in supersymmetric multiplets and the one-loop

contribution vanishes identically.

This means that in order to understand the dynamics of this model it is necessary

to compute the two-loop effective potential along the pseudo-moduli space parameterized

by Z. Explicitly, we replace all the fields by their fluctuations and assume, without loss
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of generality, that the field Z obtains a real expectation value around which it fluctuates.

Indeed, we can use the symmetry generator U(1)σ + U(1)σ̃ to rotate the point where Z is

real to any other complex value of Z with the same magnitude (Note that all the other

expectation values vanish since they correspond to fields which are massive at tree-level or

one-loop.).

The superpotential is given by

W = −hµ2δΦ22 − hµ2δΦ11 + (2.6)

+
h

2







δχ+ + δχ− +
√

2µ

δρ+ + δρ−√
2δσ







T 





δΦ11 δΦ12 δX

δΦ21 δΦ22 δY

δX̃ δỸ Z + δZ













δχ+ − δχ− +
√

2µ

δρ+ − δρ−√
2δσ̃






.

The spectrum of masses is as quoted above (when expanding around Z = 0), except that

the fields σ, σ̃,X, X̃ mix in a simple manner. The mass eigenstates are given by some linear

combinations

δσ = sin θ δA+ cos θ δB, δX = cos θ δA− sin θ δB, (2.7)

and analogous equations for the tilded fields (with the same mixing angles). Hereafter

we use the notations sθ ≡ sin θ and cθ ≡ cos θ. A and B are mass eigenstates with the

following masses

m2
A,B(Z) = h2

(

µ2 +
Z2

2
∓ Z

2

√

Z2 + 4µ2

)

. (2.8)

The mixing angle is

s2θ =
h2µ2 −m2

A

m2
B −m2

A

. (2.9)

The mass spectrum of all the particles except ρ± is supersymmetric.

From now on, the two-loop evaluation is, in principle, straightforward (but in practice

there are many diagrams). All the required two-loop functions and diagrams are beautifully

described in [26]; some highlights are reviewed in appendix A. We have simplified the

computational task (in particular, the number of diagrams) with a few tricks which may

be useful also in other models.

Consider a different theory in which we switch off the linear term for Φ22 in the

superpotential W. In other words, we consider a theory whose superpotential is W ′ =

W+hµ2δΦ22, where W is given by (2.6). In this model the moduli space parameterized by Z

still exists but now it is a supersymmetric moduli space. It cannot be lifted by perturbative

quantum corrections. This means that the effective two-loop potential vanishes identically

as a function of Z. Thus, we can write the trivial equation,

V
(2)
W = V

(2)
W − V

(2)
W ′ , (2.10)

for the two-loop effective potential we are after, V
(2)
W . Note that all of the Yukawa, cubic and

quartic interactions are identical in the two models. In fact, the only difference is that the

fields ρ± of the model W ′ are in supersymmetric multiplets with mass h2µ2. Consequently,
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Figure 1: The only 3 two-loop diagrams contributing to the Z dependent part of the effective

potential. Conforming with [26], we refer to them as SS, SSS and FFS, respectively.

diagrams that do not cancel on the right hand side of (2.10) contain necessarily a ρ± scalar.

However, this is not the only simplification we can make. Since we want the diagrams to

have some Z dependence, we should better have an A or B (fermion or boson) running in

the loop. Otherwise, the diagram contributes only to the overall zero-point energy which

we are not interested in. In this way we remain with only three different diagrams! They

are depicted in figure 1.

Note that in general there is another possible topology for a two-loop diagram, one

that includes mass flips for fermions (the third diagram depicted in figure 4). Even though

the fermionic mass term in our theory is not diagonal this diagram is absent because there

is always a ψY fermion in the loop, which is massless.

At this stage, it remains to evaluate the coefficients of the diagrams in figure 1. Of

course, as follows from (2.10), we must subtract from each of the diagrams the correspond-

ing diagram in the theory W ′. In terms of the functions given in [26] and reviewed in

appendix A, we get

V (2) = V
(2)
SS + V

(2)
SSS + V

(2)
FFS, (2.11)

where

V
(2)
SS = h2s2θ

(

fSS(2h
2µ2,m2

A) − 2fSS(h
2µ2,m2

A)
)

+ (A, s2θ) ↔ (B, c2θ), (2.12)

V
(2)
SSS = h4(µcθ + Zsθ)

2
(

fSSS(0, 0,m
2
A) + fSSS(0, 2h

2µ2,m2
A) − 2fSSS(0, h2µ2,m2

A)
)

+

+(A, cθ, sθ) ↔ (B,−sθ, cθ), (2.13)

V
(2)
FFS = h2s2θ

(

fFFS(0,m
2
A, 0) + fFFS(0,m

2
A, 2h

2µ2) − 2fFFS(0,m
2
A, h

2µ2)
)

+

+(A, s2θ) ↔ (B, c2θ). (2.14)

Our results manifestly look like the difference of amplitudes in two different theories.

From here on, it is straightforward to expand these functions in a Taylor series and to

get that the overall contribution to the effective potential is (promoting Z to be complex

again)

V (2) = const + h6µ2

(

−1 − π2

6
+ ln 4

)

|Z|2 + O(|Z|4). (2.15)

Thus, the origin is destabilized. An examination of the effective potential as a function

of Z shows that there is no minimum around the origin; the effective potential decreases

monotonically.
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Not surprisingly, there is no dependence on the renormalization scale, Q, in front of

|Z|2. It is a consequence of the following RGE argument. The effective potential satisfies

an equation of the schematic form

(

Q
∂

∂Q
+ βh

∂

∂h
− γφφ

∂

∂φ

)

V = 0,

where βh is the beta-function of a (physical) coupling h and γφ is the anomalous dimension

of a field φ. Since both of these functions begin at one-loop order (or higher), and since

there is no |Z|2 term at one-loop or at tree-level, Q ∂
∂Q

should annihilate the two-loop

coefficient of |Z|2 (or higher powers of Z), as indeed happens. Such an RGE argument is

more general: loosely speaking, this means that whenever a physical effect appears for the

first time in the effective potential, it must be renormalization scheme independent.

2.2 Supersymmetric QCD

Our general model is SQCD, whose UV electric description is given by the superpotential

W =

Nf
∑

a=1

m(a)QaQ̃
a , (2.16)

where Qa (Q̃a) is in the (anti-)fundamental representation of the gauge group SU(Nc).

We choose Nc < Nf < 3Nc/2, where the theory is in the free magnetic phase, and we

take Nf0 of the flavors to be massless, such that 0 < Nf0 < Nc. This implies that, non-

perturbatively, far away from the origin, the theory has a runaway potential for the mesons

associated with massless quarks (see, for instance, the reviews [27, 28]). The other Nf−Nf0

flavors are massive but much lighter than the strong coupling scale.

One can analyze this theory in the IR by using the Seiberg duality [11], which trans-

forms the model above to an SU(N ≡ Nf − Nc) gauge theory and matter content of a

gauge neutral Nf ×Nf meson matrix Φj
i and Nf flavors of (anti-)fundamental dual quarks

qi (q̃j). The superpotential is

W = hTr′(qiΦj
i q̃j) − hµ2Tr(Φ11 + Φ22) + non-perturbative, (2.17)

where Tr′ is taken over the N color indices, Tr is over flavor indices, and we parameterize

Φ =







(Φ11)N×N Φ12 X

Φ21 (Φ22)(Nc−Nf0)×(Nc−Nf0) Y

X̃ Ỹ (Z)Nf0×Nf0






,

qT =







1√
2
(χ+ + χ−)N×N

1√
2
(ρ+ + ρ−)(Nc−Nf0)×N

(σ)Nf0×N






,

q̃ =







1√
2
(χ+ − χ−)N×N

1√
2
(ρ+ − ρ−)(Nc−Nf0)×N

(σ̃)Nf0×N






. (2.18)
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Note that the model in the previous subsection amounts to the case Nf0 = Nc − Nf0 =

Nf −Nc = 1.

Again, rank conditions force us to expand around a SUSY breaking vacuum, as in (2.4).

Indeed, considering the F-terms for Φj
i , the rank from the cubic superpotential coupling

is at most N = Nf − Nc while the rank from the linear terms in the superpotential is

Nf − Nf0. As long as Nf0 < Nc we cannot balance these terms and SUSY is classically

broken. Interestingly, this condition is also necessary and sufficient for runaway behavior,

which is induced by non-perturbative dynamics.

So, the system settles into a SUSY breaking solution of the equations of motion,

qT =







µIN×N

0

0






, q̃ =







µIN×N

0

0






. (2.19)

Expanding around this solution we discover, not surprisingly, a plethora of massive and

massless modes, very similar to the toy model analyzed in the previous subsection. A

notable field is, of course, the Z matrix which remains massless even after a one-loop cal-

culation for the same reasons as in our simplified model. All the other modes are either

massive at tree-level or gain some positive mass squared at one-loop. An unimportant tech-

nical difference from the toy model is that now ℑχ−,ℜχ− are eaten by the supersymmetric

Higgs mechanism.2

Thus, again, we need to understand the dynamics of the Z field near the origin. The

global symmetry is SU(Nf −Nf0) × U(Nf0)σ × U(Nf0)σ̃ × U(1)χρ × U(1)R and is sponta-

neously broken in the state (2.19) to SU(Nc −Nf0)×U(Nf0)σ ×U(Nf0)σ̃ ×U(1)′ ×U(1)R.

The gauge symmetry SU(Nf − Nc) is completely Higgsed. We can use the subgroup

U(Nf0)σ × U(Nf0)σ̃ to diagonalize Z and make the eignevalues real. This simplifies the

mass matrix along pseudo-moduli space considerably. It is actually just several copies of

the one we considered in the previous subsection. In particular, these symmetry consider-

ations imply that the quadratic term takes the form V (2) ∼ Tr(Z†Z), so to determine its

coefficient it is enough to turn on a single eigenvalue which is what we do in the following.

Let us first consider the non-gauge interactions. For the purpose of the two-loop

computation, it is straightforward to see that this model breaks up into N(Nc − Nf0)

copies of the basic interactions we considered in the simplified model. A straightforward

way to see that is to reconsider any of the diagrams depicted in figure 1, e.g. the second

diagram. There are (Nc−Nf0) possible Y mesons (since only one eigenvalue of Z is turned

on) and the color of the squarks has to be matched and summed over, so we get another

factor of N . Similar counting applies to the other two diagrams.

Now we have to turn on gauge interactions. The basic observation here is that the

spectrum of vector multiplets is supersymmetric over the whole moduli space [6]. The

reason is that gauge symmetry is broken in the sector of χ which is decoupled in the mass

2However, the trace part remains massless as long as baryon symmetry is ungauged. The real part of

the trace becomes massive via one-loop effects and the imaginary part of the trace is an exact Goldstone

boson.
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matrix from SUSY breaking. Thus, our criteria that there has to be a ρ± scalar and either

A or B particles are still applicable. In these circumstances, since gauge interactions are

flavor diagonal, there are no vertices containing, for instance, Aµ, ρ, σ. Hence, there are

no diagrams with particles from vector multiplets which contribute to powers of Z in the

effective potential. One could worry about new interactions between quarks from D-terms,

VD =
g2

2

∑

A

(

Tr q†TAq − Tr q̃TAq̃
†
)2
,

where the trace is over flavor indices. In the mass basis one can see that all the interactions

R2
1R

2
2, where R1 and R2 are real scalars, cancel. So, there are no relevant contributions

either from gauge interactions or from D-terms (Intuitively, we do not expect non-trivial

effects from D-terms in the absence of accompanying fermionic loops.).

We conclude that this gauge theory exhibits instability near the origin, with no nearby

minimum, plausibly sloping to the runaway at large values of the Z meson. The effective

potential in the Z direction takes the explicit form

V = h6µ2N(Nc −Nf0)

(16π2)2

(

−1 − π2

6
+ ln 4

)

Tr(Z†Z) + O((Z†Z)2). (2.20)

3. Brane embedding

We now embed the gauge theory of subsection 2.2 on intersecting branes in the type

IIA string theory. In subsection 3.1 we present the brane construction and review the

mapping of its parameters to gauge theory. In subsection 3.2 we describe the perturbative

brane dynamics — the classical forces between the branes — and its interplay with the

perturbative quantum dynamics found in gauge theory.

3.1 Brane configuration

To construct the brane configurations in type IIA it is convenient to decompose the 9 + 1

dimensional spacetime as follows:

R
9,1 = R

3,1 × Cv × Ry × Rx7 × Cw. (3.1)

The R
3,1 is in the directions (x0, x1, x2, x3), common to all the branes. The complex planes

Cv, Cw and the real line Ry correspond to

v = x4 + ix5, w = x8 + ix9, y = x6. (3.2)

We begin with the brane configuration of figure 2(a), whose low energy limit is the magnetic

theory described in the previous section with µ = 0 [16] (for a review, see [17]).

Figure 2(a) presents a two dimensional slice (x, y), where x is a certain direction in

v. The line at the bottom of the figure stands for an NS5 brane, which is stretched in the

direction v and located at y = x7 = w = 0. We shall call it the NS brane. The bullet stands

for another NS5 brane, which is stretched in the direction w and located at v = x7 = 0 and

y = y1 > 0. We call it the NS’ brane. The × denotes a stack of Nf D6 branes, which are
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NSNS ∆
w

y

v

NS’

v( ,y) =(0,0)

(0,y )
1

(0,y )
2

N
f

D4

N
f

D6

N=N −N
f c D4

D6

D4

NS’

N
f 0

N
f 0

N −N
f f 0

D6

N=N −N
f cD4

N −Nc f

D4
0

θ

(b)(a)
x

Figure 2: (a) is the brane construction of the magnetic theory with massless quarks. (b) describes

its deformation by a non-zero µ parameter. In the electric langauge, Nf0 flavors are still massless

after this deformation.

extended in the (x7, w) space and located at v = 0 and y = y2; note that y2 > y1. These

are all the extended branes involved in our configurations.

We also have D4 branes which are stretched between extended branes. There are

N = Nf − Nc D4 branes stretched between the NS and NS’ branes, and Nf D4 branes

are stretched between the NS’ and D6 branes. Arrows on the D4 branes indicate their

orientation.

The low energy theory on the N D4 branes stretched between the fivebranes is 3+1

dimensional N = 1 SYM with gauge group U(N). Strings stretched between these N

“color D4 branes” and the Nf “flavor D4 branes” correspond to Nf fundamental chiral

superfields qi, q̃i. Strings whose both ends lie on the flavor D4 branes give rise to gauge

singlet superfields Φj
i . These are coupled via the superpotential

Wmag = hqiΦj
i q̃j. (3.3)

This magnetic theory is the Seiberg dual of U(Nc) SQCD with Nf massless flavors [11].

The mapping between the parameters of the brane construction and the gauge theory

is the following. The classical U(N) gauge coupling gmag is given by

g2
mag =

gsls
y1

, (3.4)

where gs and ls are the string coupling and length, respectively. The Yukawa coupling h

is given by

h2 =
gsls

y2 − y1
. (3.5)

Finally, the superpotential (3.3) has flat directions corresponding to arbitrary expectation

values of Φ while setting q = q̃ = 0. In the brane picture, giving an expectation value

〈Φi
i〉 corresponds to moving the i’th flavor D4 brane to the location wi between the NS’

and D6 branes. A non-zero expectation value 〈Φi
i〉 gives a mass h〈Φi

i〉 to the quarks qi, q̃i.

Geometrically, this corresponds to the length of a string stretched between the i’th flavor
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brane and the color branes, and hence,

h〈Φi
i〉 =

wi

2πl2s
. (3.6)

Another deformation of this brane configuration, which is the main focus of this work,

is to displace a stack of Nf −Nf0 out of the Nf D6 branes relative to the NS’ brane in the

v direction. The resulting configuration is shown in figure 2(b). The separation between

the Nf − Nf0 D6 branes and the NS’ brane is denoted by ∆x. This brane system is the

one studied in [18 – 21]; the latter focus on the special case Nf0 = 0, while here we take

0 < Nf0 < Nc. The configuration of figure 2(b) is the energetically favorable one.

After displacing theNf−Nf0 D6 branes, onlyNf0 of the flavor D4 branes, the “massless

flavor branes,” stay at their original position (with respect to NS’). On the other hand,

N ≡ Nf −Nc of the flavor branes connect to the N color branes and move with them to the

position v = ∆x, where they are stretched between the NS and the Nf −Nf0 D6 branes in

the y direction. The remaining Nc − Nf0 flavor D4 branes remain stretched between the

NS’ and the Nf −Nf0 D6 branes, and hence are tilted in the (y, v) space.

In the low energy gauge theory, this deformation amounts to adding to the magnetic

theory (3.3) a linear superpotential giving rise to the theory studied in the previous sec-

tion, (2.17). The mass parameter µ in the gauge theory is related to ∆x by [20]

µ2 =
∆x

gsl3s
. (3.7)

Note that the brane pictures are reliable if the separations between the branes are suffi-

ciently large and the string coupling is small. We thus set gs ≪ 1 and y1, y2 − y1 > ls,

but consider the physics for generic values of ∆x, similar to the study in [21]. In the

regime for which ∆x > ls perturbative string theory is reliable, and we can use it to study

some aspects of the brane dynamics. On the other hand, in the regime where ∆x is too

small, the brane pictures are misleading, since perturbative string theory is not reliable.

In particular, for ∆x≪ gsls we should use gauge dynamics at low energies.

3.2 Brane dynamics

Several phenomena in gauge theory have simple analogs in the brane construction. The

tilted branes break supersymmetry. Furthermore, they can be displaced between the NS’

and Nf − Nf0 D6 branes in the w direction. This corresponds to the pseudo-moduli Φ22

in gauge theory.3 When ∆x is sufficiently large, gravitational attraction of the tilted D4

branes to the NS brane fixes these moduli at w = 0. In gauge theory, an analogous effect

is the stabilization of Φ22 at the origin by the one-loop effective potential. Remarkably, it

was observed [10, 24] that in a large class of brane constructions gravitational attraction to

the NS brane predicts phenomena which are realized in the low energy gauge theory due

to one-loop quantum effects.

3More precisely, to the expectation values 〈(Φ22)
i
i〉; non-diagonal expectation values of Φ can be seen in

the brane pictures if one separates the D6 branes in the y direction.
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The other pseudo-moduli in figure 2(b) are the Nf0 deformations of the massless flavor

branes between the NS’ and the Nf0 D6 branes. These correspond to the expectation

values 〈Zj
j 〉 in gauge theory. The location of the Nf0 D4 branes in w is not fixed by an

attraction to the NS brane, since the NS and these D4 branes are mutually BPS. Indeed,

the one-loop effective potential in gauge theory does not fix the pseudo-moduli Z, as we

have seen in the previous section.

We are thus led to consider subleading effects in the perturbative string theory regime

(The analogous effect in gauge theory is the two-loop effective potential we studied.). There

are several effects here which play an important role. Let us first focus on the NS’ brane

in figure 2(b) and further concentrate on the dynamics of the end-points of the fourbranes

ending on it.4 These are codimension-two objects in the world-volume theory of a type IIA

fivebrane. To understand their interactions we can consider the effective theory in three

space-time dimensions. In this theory the end-points of D4 branes correspond to localized

sources giving rise to an electric field and some scalar fields, as in [29].5

More specifically, a single D4 brane ending on an NS’ brane at w0 and going out in

the direction y gives rise, for large |w − w0|, to the following fields (in the normalization

of [17]):

y = gsls ln |w − w0|, A0 =
1

ls
ln |w − w0|. (3.8)

A fourbrane going out at an angle θ (like the tilted D4 branes in figure 2(b)) from w′
0 has

the following profile (as follows by rotational invariance in the xy plane):

y = gsls cos θ ln |w − w′
0|, x = gsls sin θ ln |w − w′

0|, A0 =
1

ls
ln |w − w′

0|. (3.9)

Since the world-volume theory of a single fivebrane is free we can use the superposition

principle to construct a solution for two such D4 branes,

y = gsls(ln |w − w0| + cos θ ln |w − w′
0|), x = gsls sin θ ln |w − w′

0|,
A0 =

1

ls
(ln |w − w0| + ln |w − w′

0|). (3.10)

It is straightforward to compute the binding energy of the system. Of course, scalars of

like charges attract while identical electric charges repel. When θ = 0 the system is BPS

and the forces conspire to cancel. A non-zero relative angle does not affect the electrostatic

4We thank David Kutasov for pointing out the importance of the end-points dynamics, and for very

helpful and interesting discussions.
5Recalling that the world-volume theory of a fivebrane in IIA string theory does not contain vector fields

it may be confusing that it appears (sourced by the end-point) after dimensional reduction. The point is

that the six-dimensional theory contains five scalars. Four are the usual Goldstone modes which encode

the shape of the fivebrane in ten dimension and the fifth is a compact scalar which has to do with the

M-theory circle. This compact scalar has a monodromy around the D4 end-point. Upon reducing to three

dimensions we can use Poincarè duality and turn this vortex source into a usual local electric source for an

Abelian three-dimensional gauge field. For a related analysis see [30]. We are grateful to Ofer Aharony for

very helpful and interesting discussions.
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force, as is evident in (3.10), but it decreases the attractive force from the exchange of y

bosons. There is no overlap in the x direction so there is no binding force from exchanges

of x. Hence, the end-points repel. The magnitude of the repelling force behaves, for large

|∆w|, like

F (∆w) ≃ g2
s(1 − cos θ)

ls|∆w|
, (3.11)

where ∆w = w0 −w′
0.

Evidently, there are other forces acting in the system. In general, separated non-

parallel D branes in flat space always attract since gravity dominates the RR repulsion.

So, far away from the NS’ brane our Nf0 D4 branes may feel some attraction. However,

the dominant effect near the NS’ brane is expected to be the Coulomb repulsion (3.11).

To understand better the dynamics of this system one should solve the full non-linear

DBI action (which should shed light on the short distance modifications of this Coulomb

repulsion) as well as analyzing better the closed string interactions involved. Nevertheless,

the considerations above strongly suggest that the end-points repel each other and the

origin at w = 0 is destabilized.

To recapitulate, we presented an argument that the Nf0 D4 branes in figure 2(b) are

destabilized in the brane dynamics regime, nicely matching the field theory expectations.

The analysis in the perturbative brane regime is straightforward and transparent compared

to the intricate two-loop computation needed in the gauge theory. However, the classical

analysis above is not complete, but only presents some evidence for what appears to be the

correct dynamics. It will be nice to perform more complete analysis of the various effects

we described above and to obtain quantitative predictions for the fate of this system for

generic separations of the brane.

4. Comments on general distributions of masses

There are some detailed implications of the results we obtained in the previous sections,

but here we restrict ourselves to some qualitative features and postpone the complete

phenomenological analysis to the future. Consider massive SQCD with Nf quarks in the

free magnetic phase ordered as

0 < m1 ≤ m2 . . . ≤ mNf
, (4.1)

where we take the mass matrix to be diagonal with positive real eigenvalues mi. We are

interested in estimating how large should the hierarchy be, and among which masses, such

that the model is destabilized.

By the Seiberg duality we arrive at the theory of subsection 2.2 with the superpotential

W = hqΦq̃ − h

Nf
∑

i=1

µ2
i Φii, (4.2)

where µ2
i = miΛ and Λ is a strong coupling scale. If µ1 = 0 then Φ11 is not lifted at

one-loop, as we have seen. Thus, the one-loop mass of Φ11 must be proportional to µ1. On
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Figure 3: The embedding of ISS with general masses into string theory. The N = Nf −Nc heavier

flavors correspond to the vertical D4 branes, while the Nc lighter flavors correspond to the tilted

D4 branes, one of whose ends lie on the NS’ brane. As the mass of a light flavor is decreased, the

D4 approaches a vertical line.

the other hand, there is a non-vanishing two-loop contribution. We know that it must be

proportional to a combination of µ1, . . . , µNc for the simple reason that if they all vanish the

minimum is supersymmetric and the two-loop contribution vanishes. The most dominant

two-loop contribution comes from µNc .

We conclude that what is expected to affect the question of stability is primarily the

ratio of µNc and µ1. The suppressing factor is, naively, 4π
h

, the inverse loop expansion

parameter. The correct suppression factor is supposedly even smaller due to the loop

coefficients we calculated.6

In the perturbative brane dynamics regime a similar conclusion is made by very geo-

metric and explicit means. The theory with general masses in the magnetic description has

a brane embedding shown in figure 3. Now there are two competing forces: the attraction

of the tilted branes to the NS and the repulsion among them. We shall call the tilted

D4 brane corresponding to the i’th flavor the µi brane, i = 1, . . . , Nc. The strength of

the gravitational attraction of the µi brane to the NS is dictated by µi, as follows from

eq. (3.7). Hence, the µ1 brane experiences the smallest attraction to the NS. On the other

hand, it is repelled from the other branes ending on the NS’. The largest repulsion is due to

its interaction with the µNc brane, since the angle between them is the largest. It follows

from eqs. (3.5), (3.7), (3.11) that the strength of this repulsion is dictated by hµNc . Thus,

qualitatively, we see the same behavior as in the gauge theory: the stability of the brane

configuration is dictated by the ratio of hµNc and µ1.

5. Summary

We have analyzed several aspects of SU(Nc) SQCD with Nf − Nf0 massive flavors and

Nf0 massless flavors in the range 0 < Nf0 < Nc < Nf < 3Nc/2. Through a two-loop

6For non-zero µ1 we expect the two-loop result to contain dependence on the renormalization scale which

can render a precise estimate more complicated.
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computation (which was made feasible using some simplifying observations and proper

account of remnants of supersymmetric non-renormalization theorems), we found that the

field theory is in a runaway phase with no meta-stable states near the origin of field space.

We have also emphasized that our results may be important for model building inspired

by ISS like scenarios, since one is often forced to make some hierarchy of masses to take

care of the longevity — gaugino masses tension (or to fix some other phenomenological

problems, e.g. Landau poles). As we have shown, the meta-stable minimum in massive

SQCD with hierarchical masses may be destabilized due to two-loop radiative corrections.

It will be interesting to check what constraints are imposed by solving the above mentioned

phenomenological problems without inducing instability.

A similar picture was obtained for the brane embedding of this model, though by

much more elementary means. This provides an impressive test of the, yet mysterious,

correspondence between the brane dynamics and gauge theory in SUSY breaking configu-

rations. The brane dynamics can be applied to other systems, leading to new non-trivial

“predictions” in gauge theory. For example, for a general mass distribution, as in section 4,

there are various brane predictions regarding the two-loop results in gauge theory, and it

will be nice to test them.
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A. Two-loop effective potential

In this appendix we briefly review some of the results of the calculation of the two-loop

effective potential [26], which are used in this work. As we show in subsection 2.2, the

effects of gauging are irrelevant for our calculations in this paper. Hence, for simplicity we

shall review here interacting theories of scalars and fermions.

Consider a model with a set of real scalars Ri and Weyl fermions ψI . The masses of

these are given by

Lmass = −1

2
(m2)ijRiRj −

1

2
M IJψIψJ + c.c. . (A.1)
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Figure 4: Four possible diagrams which contribute to the two-loop effective potential of a theory

with interacting scalars (represented by dashed lines) and fermions (solid lines).

We consider a basis where the mass-squared matrices m2
ij and M2

IJ ≡M †
IKMKJ are already

diagonal, with eigenvalues m2
i and m2

I , respectively. Note that the (symmetric) fermionic

matrix MIJ is not necessarily diagonal.

The only possible renormalizable interactions in this theory are cubic and quartic

interactions for the scalars and Yukawa interactions of two fermions and a scalar. Following

the conventions of [26] we parameterize them as follows:

Lint = −1

6
λijkRiRjRk − 1

24
λijklRiRjRkRl −

(

1

2
Y IJkψIψJRk + c.c.

)

. (A.2)

Note that the couplings λ and λ′ are real and symmetric under the interchange of each pair

of indices. The Yukawa couplings YIJk are symmetric under interchanges of spinor flavor

indices I and J .

In the perturbative regime one can expand the effective potential as

V = V (0) +
1

16π2
V (1) +

1

(16π2)2
V (2) + · · · . (A.3)

Generically, the two-loop potential V (2) depends on the renormalization scale, Q. The four

possible diagrams which can contribute to V (2) are depicted schematically in figure 4. We

will further refer to these diagrams as SSS, FFS, FFS and SS respectively. Note that the

diagram FFS appears since the masses of fermions are not necessarily diagonal.

The contribution of each of these diagrams is parameterized by the following functions:

V
(2)
SSS =

1

12
(λijk)2fSSS(m

2
i ,m

2
j ,m

2
k) (A.4)

V
(2)
SS =

1

8
λiijjfSS(m2

i ,m
2
j ) (A.5)

V
(2)
FFS =

1

2
|Y IJk|2fFFS(m

2
I ,m

2
J ,m

2
k) (A.6)

V
(2)

FFS
=

1

4
Y IJkY I′J ′kM∗

II′M
∗
JJ ′fF̄F̄S(m

2
I ,m

2
J ,m

2
k) + c.c. (A.7)

The functions f can be expressed in terms of three functions I(x, y, z), J(x, y) and J(x)
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which are defined as

J(x) = x

(

ln
x

Q2
− 1

)

(A.8)

J(x, y) = J(x)J(y) (A.9)

I(x, y, z) =
1

2
(x− y − z) ln

y

Q2
ln

z

Q2
+

1

2
(y − x− z) ln

x

Q2
ln

z

Q2
+ (A.10)

+
1

2
(z − x− y) ln

x

Q2
ln

y

Q2
+ 2x ln

x

Q2
+ 2y ln

y

Q2
+

+2z ln
z

Q2
− 5

2
(x+ y + z) − 1

2
ξ(x, y, z) ,

where ξ is defined by

ξ(x, y, z) = R

(

2 ln
z + x− y −R

2z
ln
z + y − x−R

2z
− ln

x

z
ln
y

z
− (A.11)

−2Li2
z + x− y −R

2z
− 2Li2

z + y − x−R

2z
+
π2

3

)

,

with

R =
√

x2 + y2 + z2 − 2xy − 2xz − 2yz. (A.12)

In terms of I and J , the functions f are given by

fSSS(x, y, z) = −I(x, y, z) (A.13)

fSS(x, y) = J(x, y) (A.14)

fFFS(x, y, z) = J(x, y) − J(x, z) − J(y, z) + (x+ y − z)I(x, y, z) (A.15)

fFFS(x, y, z) = 2I(x, y, z) . (A.16)

In our specific model we need only I functions with at least one argument vanishing,

so we give them explicitly

I(0, x, y) = (x− y)

(

Li2(y/x) − ln(x/y) ln
x− y

Q2
+

1

2

(

ln
x

Q2

)2

− π2

6

)

−5

2
(x+ y) + 2x ln

x

Q2
+ 2y ln

y

Q2
− x ln

x

Q2
ln

y

Q2
.

In the case that two arguments vanish it simplifies further

I(0, 0, x) = −1

2
x

(

ln
x

Q2

)2

+ 2x ln
x

Q2
− 5

2
x− π2

6
x.

However, the expression for I(0, x, y) is still not very convenient since it contains terms

which have no Taylor expansion around the point x = y, which appears commonly in our

expressions. This is a spurious singularity which cancels once all the terms are summed.

To remove it once and for all we use Euler’s identity for Dilogarithms

Li2(x) + Li2(1 − x) = − lnx ln(1 − x) +
π2

6
,
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which gives

I(0, x, y) = (x− y)

(

−Li2(1 − y/x) − ln(x/y) ln
x

Q2
+

1

2

(

ln
x

Q2

)2
)

−5

2
(x+ y) + 2x ln

x

Q2
+ 2y ln

y

Q2
− x ln

x

Q2
ln

y

Q2
.
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